

CSIR R&D in emerging manufacturing technologies

Dr Neil Trollip

Tesla Production Line

State of SA Manufacturing sector

CSIR Vision: Catalyse re-industrialisation

Technologies driving FIR / NIR

CSIR in Advanced Robotics

Advanced Robotics

The cobot market could grow from just over \$ 100m in 2016 to \$ 3bn by 2020 (Barclays Capital)

Advanced Robotics (cont)

Reconfigurable Manufacturing Machines

- Increased production agility for product families
- Mass customisation
- Lower CAPEX costs
- Interconnected and integrated systems

Assistive Robots

- Share a work area and interact directly with humans
- Perceive their environment with the aid of sensors and intelligent algorithms
- Communicate with people multi-modally
- Navigate autonomously and make decisions independently

Factories of the future will be adaptable, reconfigurable and allow humans and robots to work alongside each other

<#>

CSIR: Early stage research

STime (+33555533.4 BOSElapuel (+601.48 Indi Time (+6855553.46 Indi Elapuel (+681.45

Multi-robot systems

- Navigation and task execution using multiple robots
- Optimal resource allocation strategies

Mobile manipulation

- Adaptive, reconfigurable
 grasping
- Programming through demonstration or behaviour learning

CSIR: Robotics in Maintenance

The Need

- 15 ton injection mould requiring surface repair
- Downtime cost of R120k per minute and 2 day travel time

The Solution

- Mobile industrial laser engineering solution
- Mould and die repair at the factory
- Increase agility and reduce costs associated with unplanned downtime

CSIR: Robotics as Inspection Systems

- Autonomous rail vehicle
 - Early warning system
 - Inspection system
- Different drive trains
 - latest batteries & fuel cell technology
- Field testing in progress

CSIR in Additive Manufacturing

SA Additive Manufacturing Strategy

Priority focus areas

- Qualified AM parts for medical and aerospace
- AM in traditional manufacturing sectors
- New AM materials and technologies
- SMME development and support

Capacity development

Education and awareness

CSIR Additive Manufacturing Focus

- TiAl (aerospace applications)
- Ti6Al4V (CSIR produced powder)
- 17-4 PH (aerospace grade stainless steel)

Process development: High Speed Selective Laser Melting (HSAM)

- High speed AM process optimisation in dedicated process cell
- Alloy modification and optimisation studies for AM applications

Application development

DEAS THAT WOR

 AM applications in power generation industry (Eskom)

Aeroswift

- Collaboration between Aerosud IC and CSIR to design and construct a large area, powder bed AM system, for metallic components
- High speed, versatile system for production of large metal parts (5 -10 x faster than best in class commercial systems)
- Build volume: 2m x 0.6m x 0.6m (scalable)
- Pre-heating and environmental control
- Materials: Ti-6AI-4V, stainless steel alloys, Inconel, other metals

aeraswift

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

<#>

CSIR in Micromanufacturing

CSIR Cleanroom Facilities

Cleanroom for soft lithography

Microstructuring onto Si wafers

Microfluidic circuits in PDMS

Cartridge-based Microfuidics

Microfluidics allows for the precise control of extremely small volumes of fluid

An ideal technology for development of point-of-care diagnostics and encapsulation techniques

Microfluidic-based cartridge for blood counting applications developed at the CSIR

Manufactured with micromilling, micro-injection moulding

Printed Functionality Capabilities

Screen printing

Printed Functionality Applications

Lateral flow strips for medical diagnostics

Printed sensors

Printed batteries powering printed circuits

Printed electronics

CSIR in Industrial IoT

Internet of Things

"Inter-networking of physical devices, vehicles, buildings and other items embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data"

By 2020 there will be over 26 billion connected devices! (Gartner)

CSIR Industrial IoT Focus

Smart warehouse

 Optimal routing and placement in simulated warehouse with 3D visualisation

IoT augmented awareness

 Activity and hotspot detection in a crowd environment

Energy saving

 Sense consumption and actuate device to optimise usage

CSIR in Augmented Reality

Augmented Reality

A technology which enriches the real world with digital information and media such as 3D models and videos

- Complex assembly
- Maintenance
- Quality assurance
- Expert support
- Training
 - Augmented intelligence

"We've only begun to scratch the surface of what augmented reality can do for manufacturing" – Engineering.com

Product Life Cycle Management (PLM)

PLM touches all phases of a product's life and the entire value chain

CSIR and **PLM**

Product Life Cycle Management Technology Centre

PLM Benefits

Benefit	Improvement
Reduce Time to Market	~ 30%
Reduce Product Development Cost	~ 20%
Reduce Product Cost	~ 20%
Reduce Cost of Quality	~ 20%
Reduce Change Management Cost	~40%

Technology convergence & integration

Technology convergence & integration

IDEAS THAT WORK FO INDUSTRIA

CSIR: Corocam / Multicam

CSIR Approach: Open Innovation

Demonstration/Learning Factories

- Demonstration platforms for firms interested in FIR
- Experimental platforms where FIR concepts can be tested
- Collaborative product development spaces
- Facilities for technical skills training and hands-on experience

CSIR Learning Factory Concept

Thank you

